Finite dimensional subspaces of

نویسنده

  • William B. Johnson
چکیده

We discuss the nite dimensional structure theory of L p ; in particular, the theory of restricted invertibility and classiication of subspaces of`n p .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frameness bound for frame of subspaces

In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.

متن کامل

Finite dimensional subspaces of Lp

We discuss the finite dimensional structure theory of L p ; in particular, the theory of restricted invertibility and classification of subspaces of ℓ n p .

متن کامل

A Simple Metric for Finite Dimensional Vector Spaces

A new metric for subspaces of a finite dimensional vector space V is identified. The metric is determined by the dimensions of M + N and M∩N , where M and N are subspaces of V . Some properties of the metric are derived as well. 2000 Mathematics Subject Classification: 15A03

متن کامل

The Cohomology Ring of the Complement of a Finite Family of Linear Subspaces in a Complex Projective Space

The integral cohomology ring of the complement of an arrangement of linear subspaces of a finite dimensional complex projective space is determined by combinatorial data, i.e. the intersection poset and the dimension function.

متن کامل

Enumeration of Splitting Subspaces over Finite Fields

We discuss an elementary, yet unsolved, problem of Niederreiter concerning the enumeration of a class of subspaces of finite dimensional vector spaces over finite fields. A short and self-contained account of some recent progress on this problem is included and some related problems are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000